Abstract

Nanostructured metal oxides received considerable research attention due to their unique properties that can be used for designing advanced nanodevices. Thus, in the present study, zinc oxide/graphene oxide (ZnO/GO) nanocomposite was synthesized, characterized and implemented in an electrochemical system. The formation of a compacted ZnO/GO nanocomposite was confirmed by field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and attenuated total reflectance spectroscopy. HRTEM showed that ZnO nanocrystals (NCs) are well formed on the GO surface and are interconnected via GO functional groups. From the XRD patterns, the average size of ZnO NCs was found to be about 21.7 ± 2.3 nm which is in agreement with the HRTEM results. The newly developed nanocomposite-based electrochemical system showed a significant improvement in both electrical conductivity and the electrocatalytic activity as noted from the cyclic voltammetry measurements. Consequently, direct electron transfer efficiency was confirmed and used for the amperometric detection of hydrogen peroxide (H2O2). Fast and sensitive electrochemical responses for the detection of H2O2 at 1.1 V in the linear response range from 1 to 15 mM with the detection limit (S/N = 3) of 0.8 mM were obtained. These results demonstrated that the prepared ZnO/GO/CPE displayed a good performance along with high sensitivity and long-term stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.