Abstract

A new oxide-ion conductor of Aurivillius family with a general formula Bi2AlxV1 − xO5.5 − x − δ; 0 ≤ x ≤ 0.20 (BIALVOX) was synthesized by the sol-gel citrate route. Powder X-ray diffraction and simultaneous thermogravimetric and differential thermal analyses confirmed that the calcination of BIALVOX xerogels is fully completed at around 500°C after three hours of thermal treatment. It has been found that the β-orthorhombic phase is stabilized with compositions x ≤ 0.07, whereas the stabilization of the γ′-phase takes place for x ≥ 0.10. AC impedance spectroscopic investigation suggested that the charge accumulation at grain boundaries is thermally activated process. However, the maximum electrical conductivity (7.73 × 10−5 S cm−1) noticed for BIALVOX.13 at 300°C was attributed to the maximum vacancy concentration in the equatorial planes, responsible for the ion diffusion through the structure. This has been further evidenced by the temperature dependence of dielectric permittivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.