Abstract

Five model conetworks based on cross-linked star ampholytic copolymers were synthesized by group transfer polymerization. The ampholytic copolymers were based on two hydrophilic monomers: the positively ionizable 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the negatively ionizable methacrylic acid (MAA). Ethylene glycol dimethacrylate was used as the cross-linker. These five ampholytic model conetworks were isomers based on equimolar DMAEMA-MAA copolymer stars of different architectures: heteroarm (two), star block (two), and statistical. The two networks based on the homopolymer stars were also synthesized. The MAA units were introduced via the polymerization of tetrahydropyranyl methacrylate and the acid hydrolysis of the latter after network formation. All the precursors to the (co)networks were characterized in terms of their molecular weights using gel permeation chromatography (GPC). The mass of the extractables from the (co)networks was measured and characterized in terms of molecular weight and composition using GPC and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. The degrees of swelling (DS) of all the ampholytic conetworks were measured as a function of pH and were found to present a minimum at a pH value which was taken as the isoelectric point, pI. The DS and the pI values did not present a dependence on conetwork architecture. Finally, DNA adsorption studies onto the ampholyte conetworks indicated that DNA binding was governed by electrostatics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call