Abstract

The glass forming region in the B2O3-Al2O3-Y2O3 composition diagram has been determined by a melting and quenching procedure at temperatures up to 1800°C. Different physical characteristics (density, coefficient of thermal expansion, glass transition and crystallization peak temperatures) have been determined for a 35B2O3-40Al2O3-25Y2O3 glass composition (in mol.%). By using a predictive model and some NMR structural data, different elastic moduli (Young's modulus, bulk modulus, shear modulus and Poisson's ratio) have been calculated. The devitrification behaviour has also been studied. Internal crystallization is the dominant mechanism and a new (Y, Al)BO3 ternary phase has been characterized by X-ray powder diffraction. The temperature and time nucleation dependence have been determined from DTA experiments as well as the crystallization kinetics (i.e. the Avrami exponent and the activation energy for crystal growth).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.