Abstract

Praseodymium and nitrogen co-doped titania (Pr/N-TiO 2) photocatalysts, which could degrade Bisphenol A (BPA) under visible light irradiation, were prepared by the modified sol–gel process. Tetrabutyl titanate, urea and praseodymium nitrate were used as the sources of titanium, nitrogen and praseodymium, respectively. The resulting materials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV–vis absorbance spectroscopy, X-ray photoelectron spectroscopy (XPS), N 2 adsorption–desorption isotherm and Fourier transform infrared spectra (FTIR). It was found that Pr doping inhibited the growth of crystalline size and the transformation from anatase to rutile. The degradation of BPA under visible light illumination was taken as probe reaction to evaluate the photo-activity of the co-doped photocatalyst. In our experiments, the optimal dopant amount of Pr was 1.2 mol% and the calcination temperature was 500 °C for the best photocatalytic activity. Pr/N-TiO 2 samples exhibited enhanced visible-light photocatalytic activity compared to N-TiO 2, undoped TiO 2 and commercial P25. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. Pr doping could slow the radiative recombination of photogenerated electrons and holes in TiO 2. The improvement of photocatalytic activity was ascribed to the synergistic effects of nitrogen and Pr co-doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.