Abstract
Hypoxia activated Co(III) complexes as prodrugs may provide with a selective delivery of cytotoxic or antibacterial compounds. Whithin this field sixteen novel Co(III) ternary complexes with the general formula [Co(4N)(flav)](ClO4)2, where 4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa) and flav = deprotonated form of differently substituted flavonols have been synthesized, characterized, and their cytotoxicity assayed under both normoxic and hypoxic conditions. Molecular structures of two free flavonols and seven complexes are also reported. In all the complexes the bioligands exhibited the expected (O,O) coordination mode and the complexes showed a slightly distorted octahedral geometry. Cyclic voltammetric studies revealed that both the substituents of the flavonoles and the type of 4N donor ligands had an impact on the reduction potential of the complex. The ones containing tren demonstrated significantly higher stability than the tpa analogues, making these former compounds promising candidates for the development of hypoxia-activated prodrug complexes. Tpa complexes showed higher activity against both selected human cancer cell lines (A549, A431) than their free ligand flavonols, indicating that the anticancer activity of the bioligand can be enhanced upon complexation. However, slight hypoxia-selectivity was found only for a tren complex (11) with moderate cytotoxicity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.