Abstract

Synthetic hydrogels are important biomaterials for many biomedical applications and hydrogels produced via photo-gelation have shown particular promise. In this paper, we describe a new family of biodegradable hybrid hydrogels fabricated in aqueous solution via long wavelength UV photo-crosslinking using maleic chitosan and polyethylene glycol diacrylate (PEGDA) as precursors. The maleic chitosan precursor was prepared by a simple one-step chemical modification of chitosan, with high yields, and characterized by Fourier transform infrared spectroscopy, (1)H NMR and (13)C NMR. Maleic chitosan and PEGDA precursors at a wide range of weight feed ratios were mixed in aqueous solution and directly photo-crosslinked for 10 min under a long wavelength UV light (365 nm) using 4-(2-hydroxyethoxy) phenyl-(2-hydroxy-2-propyl) ketone (Irgacure 2959) as photoinitiator. It was observed that as the weight feed ratio of maleic chitosan to PEGDA decreased the pore sizes of the hydrogel samples decreased, thereby increasing the densities of the hydrogel networks and producing a lower swelling ratio and a higher compressive modulus. The molecular weight of PEGDA had a similar effect. Preliminary cell cytotoxicity tests of both the maleic chitosan precursor and maleic chitosan/PEGDA hydrogels, based on the MTT assay and live-dead assay, respectively, showed that these new chitosan-based biodegradable biomaterials were relatively non-toxic to bovine aortic endothelial cells at low dosages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.