Abstract

AbstractPlatinum‐based complexes are among the most widely utilized cancer therapeutics. Current Pt(II) drugs face some challenges including toxicity and drug resistance. To solve these issues, great efforts have been devoted to developing nonclassical platinum complexes, such as Pt(IV) prodrugs, that act via mechanisms distinct from those of the approved drugs. Compared with active Pt(II) counterparts, Pt(IV) complexes are relatively inert. Although direct interactions between Pt(IV) complexes and nucleotides have been reported, the reaction is slow due to the kinetic inertness of Pt(IV) complexes. Herein, we design and synthesize a Pt(IV) monotrifluoromethyl complex, in which the chloride ligand that is trans to trifluoromethyl ligand is reactive. The Pt(IV) monotrifluoromethyl complex is very stable in water but displays high reactivity towards various substrates including buffer components and 5’‐dGMP. The study of reaction mechanism reveals that this Pt(IV) complex reacts with phosphate via SN2 nucleophilic substitution pathway, which is different from Pt(II) drugs. The Pt(IV) monotrifluoromethyl complex is cytotoxic in human ovarian cancer cells. Our work reports an example of a reactive organometallic Pt(IV) complex that can directly interact with nucleophiles and implies its potential as an anticancer agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.