Abstract
This study aims to fundamentally understand the polymer network formed by poly(ethylene glycol) diacrylate (PEGDA) MW 700 and 3-methoxypropylamine (3MOPA) as well as to characterize the degradation response of this material with and without applied cyclic stress. Macromer reaction chemistry was confirmed by (1)H NMR measurements. UV calorimetry analysis revealed conditions of network formation were dependent on molecular weight of the PEGDA monomer and light intensity. The glass transition temperature of all networks PEGDA MW 258, 575, and 700 were measured and found to be in the range of -40 to -30 degrees C with a rubbery moduli ranging from 4 to 10 MPa by DMA. Degradation studies were performed with and without applied cyclical stress, and in most cases, elastic modulus decrease and mass loss occurred steadily over a 24-h period. Unexpected partial crystallization was discovered to occur in the networks containing higher molecular weight PEGDA in the presence of humidity and high frequency cyclic loading. In all materials, high frequency applied cyclic loading during in situ degradation resulted in catastrophic fracture of the material prior to an appreciable decrease in modulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.