Abstract

A novel cyclolinear phosphazene-based epoxy resin has been synthesized through a four-step synthetic route. The curing behaviors of this epoxy resin with methyl tetrahydrophthalic anhydride, 4,4′-diaminodiphenylmethane, and novolak as hardeners were investigated by differential scanning calorimetry (DSC). The thermal behaviors and stabilities were also evaluated with DSC and thermogravimetric analysis. These thermosets achieved high glass transition temperatures over 150 °C and also gained good thermal stabilities with high char yields. The flammability characteristics of the cyclolinear phosphazene-based epoxy thermosets were investigated by limiting oxygen index (LOI) and UL-94 vertical burning experiments. The high LOI values and UL-94 V-0 classification of these epoxy thermosets indicate that the incorporation of phosphazene rings into the molecular backbone imparts non-flammability to the epoxy resin as a result of the unique combination of phosphorus and nitrogen following by a synergistic effect on flame retardancy. The analysis of the residual chars collected from the UL-94 test demonstrates that cyclotriphosphazene moieties of this epoxy resin can enhance char formation during combustion serving as a barrier against heat and oxygen diffusion, and consequently the flame retardancy of the thermosets is improved significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call