Abstract

The preparation of a new trisodium triborate, Na(3)[B(3)O(4)(OH)(4)], and its complete characterization in terms of molecular structure and thermal behavior are reported. Synthesis of this compound was achieved either by NaBH(4) hydrolysis or by thermal treatment of Na[B(OH)(4)].2H(2)O. The crystal structure was determined by single-crystal X-ray diffraction. The trisodium triborate crystallized in the monoclinic system (a = 12.8274(6) A, b = 7.7276(4) A, c = 6.9690(3) A, and beta = 98.161(3) degrees ), space group Cc, Z = 2. The structure of Na(3)[B(3)O(4)(OH)(4)] comprised [B(3)O(4)(OH)(4)](3-) polyanions, based on B-O-containing rings with two tetracoordinated boron atoms and one tricoordinated boron atom in the fragments BO(2)(OH)(2) and BO(3), respectively. These polyanions are interconnected by four intermolecular hydrogen bonds and presented a tilt of 10.470(4) degrees compared to the a axis. Thus, they are stacked by rotation of about 180 degrees around an axis defined by the three-coordinated boron atoms and parallel to the c axis. Such polyanions were only observed previously in two synthetic compounds, M(3)[B(3)O(4)(OH)(4)].2H(2)O with M = K and Rb, which were isostructural. The originality of the present work was the synthesis and the description of a different crystallographic structure containing this polyanion. Characteristic peaks ranging from 500 to 1500 cm(-1) and around 3300 cm(-1) highlighted the presence of the B-O rings and hydroxyl groups, respectively. The decomposition temperature T = 155 degrees C was obtained by thermogravimetric analysis, and the following equivalent formula in terms of hydration degree was proposed: NaBO(2).(2)/(3)H(2)O. Na(3)[B(3)O(4)(OH)(4)] decomposed into Na(3)[B(3)O(5)(OH)(2)] in equilibrium with its vapor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.