Abstract

AbstractConjugated aromatic macrocycles are attractive due to their unique photophysical and optoelectronic properties. In particular, the cyclic radially oriented π‐system of cycloparaphenylenes (CPPs) gives rise to photophysical properties unlike any other small molecule or carbon nanomaterial. CPPs have tunable emission, possess large extinction coefficients, wide effective Stokes shifts, and high quantum yields. However, accessing bright CPPs with emissions beyond 500 nm remains difficult. Herein, we present a novel and bright orange‐emitting CPP‐based fluorophore showing a dramatic 105 nm red‐shift in emission and striking 237 nm effective Stokes shift while retaining a large quantum yield of 0.59. We postulate, and experimentally and theoretically support, that the quantum yield remains large due to the lack of intramolecular charge transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.