Abstract

Pure and dual doped ZnO nanoparticles were synthesized via the wet chemical method. The synthesized samples were characterized by XRD, HR-SEM/EDS, HR-TEM, UV–Vis, PL, FT-IR, and FT-Raman spectral measurements. The prepared ZnO nanoparticles exhibit a hexagonal wurtzite structure and [Ce–La, La–Gd, Gd–Ce] rare earth dual doped ZnO nanoparticles was confirmed from the shift in XRD peaks position, cell parameter and also changes in the peaks intensity. HR-SEM/EDS and HR-TEM show spherical in shape with less agglomeration on the surface of all samples and the images are clearly revealed that the particle size ~ 40 nm (PZ), 14 nm (ZCL3), 16 nm (ZLG3) and 28 nm (ZGC3). UV–Vis spectra show a strong Ultraviolet region absorbance for ZCL3 sample with the low Energy band gap value of 2.81 eV. The presences of the functional group and molecular vibrations are characterized by employing the FT-IR and FT-Raman spectra. From the PL spectra, it was found that the peak position of all samples produces a visible emission. The photocatalytic performance of the synthesized doped nanoparticles found to exhibit better degradation of MB dye under solar irradiation ZCL3 showed an increase in the photo catalytic decolorization efficiency. The bactericidal activity of dual doped ZnO nanoparticles was investigated against Gram-positive and Gram-negative bacteria and compare with standard ampicillin. We observe that ZCL3 sample have excellent antibacterial activity against Gram-negative bacteria (P. mirabilis) and the mean zone of inhibition ~ 20 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.