Abstract

HypothesisThe absence of targetability is the primary inadequacy of conventional chemotherapy. Targeted drug delivery systems are conceptualized to overcome this challenge. We have designed a targetable magnetic nanocarrier consisting of a superparamagnetic iron oxide (SPIO) core and biocompatible and biodegradable poly(sebacic anhydride)-block-methyl ether poly(ethylene glycol) (PSA-mPEG) polymer shell. The idea is that this type of carriers should facilitate the targeting of cancer cells. ExperimentsPSA-mPEG was synthesized with poly-condensation and the in vitro degradation rate of the polymer was monitored by gel permeation chromatography (GPC). The magnetic nanocarriers were fabricated devoid of any surfactants and were capable of carrying high payload of hydrophobic dye. The successful encapsulation of SPIO within the polymer shell was confirmed by TEM. The results we obtained from measuring the size of SPIO loaded in polymeric NPs (SPIO-PNP) by dynamic light scattering (DLS) and iron content measurement of these particles by ICP-MS, indicate that SPIO is the most suitable carrier for cancer drug delivery applications. FindingsMeasuring the hydrodynamic radii of SPIO-PNPs by DLS over one month revealed the high stability of these particles at both body and room temperature. We further investigated the cell viability and cellular uptake of SPIO-PNPs in vitro with MDA-MB-231 breast cancer cells. We found that SPIO-PNPs induce negligible toxicity within a concentration range of 1–2μg/ml. The TEM micrographs of thin cross-sectioned MDA-MBA-231 cells showed internalization of SPIO-PNPs within size range of 150–200nm after 24h. This study has provided a foundation for eventually loading these nanoparticles with anti-cancer drugs for targeted cancer therapy using an external magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.