Abstract

The synthesis of Cu nanoparticles by reducing CuSO4 with hydrazine in ethylene glycol under microwave irradiation, has been described. These nanoparticles have been characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern and X-ray diffraction (XRD) which shows an average particle diameter of 20.3nm. The catalytic activity, of Cu nanoparticles on thermal decomposition of ammonium perchlorate (AP), composite solid propellants (CSPs) using thermogravimetry (TG), differential scanning calorimetry (DSC) have been measured. Results indicate that nanoscale Cu particle lowers the energy of activation for thermal decomposition of AP and CSPs. Activation energy for ignition has also been found to be lowered in case of AP, CSPs, HMX and NTO. The burning rate of CSPs has been found to be enhanced. Isothermal TG data was used to evaluate kinetic parameters by model fitting as well as isoconversional methods and values of activation energy were found to be lowered with Cu nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call