Abstract

Three mononuclear nonheme MnIII(salophen) complexes, 1a-1c, with tetradentate ligands containing two deprotonated phenolates ([(X2-tert-butyl-salophen)Mn(OAc)(H2O)] (tert-butyl-salophen = N,N′-bis(6-di-tert-butylsalicylidene)-1,2-phenylenediaminato, 1a for X = Cl, 1b for X = H, and 1c for X = CH3)) were synthesized and characterized using 1H NMR, 13C NMR, elemental analysis and ESI-Mass spectrometry. These Mn(III) complexes were used to efficiently catalyze the epoxidation reactions of diverse aliphatic, aromatic and terminal alkenes to form the corresponding epoxides with MCPBA (m-chloroperoxybenzoic acid) as an oxidant under mild conditions. Notably, catalysts 1a-1c preferably react with the cis-alkene because of the steric hindrance between the reactive intermediate MnIII-OOC(O)R and the trans-type substrate. A Hammett study and product analysis using PPAA (peroxyphenylacetic acid) as a mechanistic indicator suggested that the peracid reacted with the Mn(III) complex to generate the MnIII-OOC(O)R intermediate, which underwent both homolysis and heterolysis to form MnIV=O or MnV=O. The reactive MnV=O might participate in the alkene epoxidation with good stereospecificity, whereas the MnIV=O species might trigger radical-type oxidation to produce non-stereospecific by-products, such as ketones and aldehyde. On the other hand, MnIII-OOC(O)R (2) could oxidize the reactive cyclohexene to the epoxide, whereas it was unable to epoxidize the poorly reactive 1-octene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call