Abstract

In our current study, we demonstrate that lanthanum and yttrium ortho ferrites can be synthesized using a combustion process called self-propagating, high-temperature synthesis (SHS) using lanthanum(III) oxide and yttrium(III)oxide, chromium oxide, Iron metal, and potassium perchlorate as raw materials. Synthesized lanthanide and yttrium orthoferrites were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric differential scanning calorimetry techniques. The results show that the synthesized orthoferrites are of high quality with particle sizes less than 100 nm and showing less agglomeration. Synthesized lanthanum and yttrium orthoferrites exhibited electrical conductivities around 50 kHz for different temperatures ranging from 35 to 500°C. The rise in conductivity is found to be linear with an increase in temperature. Herein, our work paves way for low-cost, large-scale production of lanthanide orthoferrites without the need for reaction solvents, which greatly opens up the scope for combustion-based synthesis approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.