Abstract

Temperature- and pH-sensitive hydrogels based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA) were applied for immobilization of lipase from Candida rugosa (CRL). The hydrogels were synthesized by free radical crosslinking copolymerization in the presence of lipase. Characterization of samples by swelling studies, at pH 2.20 and 6.80 at a temperature of 37 °C, scanning electron microscopy (SEM) and Fourier transform infrared analysis (FT-IR) confirmed that the degree of crosslinking, the non-ionic/ionic (NiPAAm/IA) ratio and the enzyme content had impacts on the hydrogel structure, mechanical properties, morphology and swelling kinetics. All hydrogels demonstrated protein loading efficiencies as high as 95 wt.%. A specific activity of the immobilized lipase of around 38 IU/g was attained for an enzyme loading of 20.0 wt.%. As a result, improved pH and temperature optima values were obtained for the immobilized systems in relation to those for the free lipase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call