Abstract

Copper Oxide Nanoparticles (CuONPs) show a broad spectrum of antimicrobial activity against various species of microorganisms, including gram-positive and gram-negative fungi and bacteria, but in general gram-negative bacteria are more resistant to the effects of copper nanoparticle ions than gram-positive ones. In this work, synthesis of copper oxide nanoparticles has been carried out using laser ablation methods and the nanoparticles were applied as antibacterial agent against gram-positive bacteria Enterococcus faecalis. Experimentally, Nanoparticle synthesis was carried out using laser ablation with a power of 40 mJ. Antibacterial test with disc diffusion test using disc paper soaked in 0.1% chitosan solution (negative control), sodium hypochlorite (positive control), and copper oxide nanoparticles with a concentration of 60 ppm, 80 ppm, 100 ppm; then put into a petri dish that has been planted with the Enterococcus faecalis bacteria. Copper oxide nanoparticles were formed in chitosan as confirmed by UV-Vis, FTIR, SEM and EDX analysis. Post Hoc Tukey HSD analysis showed a significant difference in the negative control group, and the inhibition zone diameter of the treatment group was the same. The synthesis of nanoparticles using laser ablation fired at a pure copper plate succeeded in producing copper oxide nanoparticles in chitosan solvent. The firing time affects the concentration and size of the nanoparticles. More laser energy is required to produce a smaller particle size due to its antibacterial activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call