Abstract

Macrocyclic ligands N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]succinoyl dicarboxamide (H2L1) and N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]sebacoyl dicarboxamide (H2L2) were synthesized and characterized by various spectral techniques. Macrocyclic di- and tetra-homonuclear phenoxo bridged CuII, CoII, NiII, ZnII, CdII and HgII complexes have been synthesized through the template method by using the precursors 2,6-diformyl-4-methylphenol, succinoyldihydrazide/ sebacoyldihydrazide and respective metal chlorides in 2:2:2/2:2:4 ratio respectively. The synthesized complexes were characterized by i.r., n.m.r., u.v.-vis., FAB-mass, e.s.r., magnetic susceptibility and elemental analyses data. The elemental analyses and FAB-mass spectral data have justified the dinuclear and tetra nuclear structure for the complexes of the ligands H2L1 and H2L2 respectively. The observed low magnetic moment values revealed the existence of antiferromagnetic spin exchange interaction operating between the two metal centers. Electronic data suggested the octahedral geometry for NiII complexes and square pyramidal geometry for CuII, CoII, ZnII, CdII and HgII complexes of both the ligands. The CuII, CoII and ZnII complexes of both the ligands have shown good antifungal activity against Aspergillus niger and Fusarium oxysporum and medium to weak antibacterial activity against Escherichia coli and Staphylococcus aureus when compared to the standard drugs Grisefulvin and Ciprofloxacin respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.