Abstract

Encapsulation of bioactive compounds (e.g., phenolic acids) into nanoparticles is a well-received technique in the searching for new antimicrobial agents against multidrug-resistant pathogens. Encapsulation can be a good technique to maintain the stability of phenolic acids against environmental conditions. In this study, 3-hydroxyphenylacetic acid (3-HPAA) was encapsulated into alginate-chitosan nanoparticles with the ion gelation technique. The characterization of loaded and unloaded nanoparticles was performed via dynamic light scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy. According to the results, 3-HPAA loaded nanoparticles have spherical shapes with a diameter range of 40-80 nm and an average hydrodynamic diameter of 361.0 +_ 69.8 nm. The loading of 3-HPAA was successfully achieved based on the Fourier transform infrared spectra and encapsulation percentage studies. The antimicrobial effect of the nanoparticles in solution forms was tested on P. aeruginosa, S. epidermidis, MRSA, and MSSA. The results demonstrated that the 3-HPAA loaded alginate chitosan nanoparticle solution showed elevated antimicrobial effect due to the pH change by treatment with 1% acetic acid, and it displayed bacteriocidal effects in a strain-specific and dose-dependent manner. Therefore, the 3-HPAA loaded alginate chitosan nanoparticle solution was produced successfully with the bacteriocidal effect against serious pathogenic bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call