Abstract

A novel diblock copolymer composed of bisphosphonate and pyridine oligomers has been prepared by reversible addition–fragmentation transfer (RAFT) polymerization. Ag ion was introduced into the polymer via its coordination with the pyridine groups, followed by a reduction process to obtain Ag nanoparticles with diameters of 5–15 nm measured by transmission electron microscopy (TEM). In addition, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) proved successful introduction of Ag nanoparticles into polymer. Ag nanoparticles containing polymer exhibited excellent antibacterial properties toward Lactobacillus plantarum (L. plantarum). In order to investigate its practical application as an antibacterial coating, the synthesized polymer was tethered onto hydroxyapatite (HA, main mineral component of natural bone, teeth, and most of implants for bone repair) surfaces via interaction between the polymer’s bisphosphonate group and HA, forming ∼4 nm thick layers. Ag nanoparticles (5–15 nm in diameter) uniformly distributed around the HA particles were fabricated following the above process. The ability of the coating to kill the bacteria L. plantarum was determined, which revealed strong antibacterial properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.