Abstract

A bioactive ligand and its dinuclear metal(II) complexes were synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Visible), nuclear magnetic resonance (1H-NMR), mass spectroscopy and molar conductance measurements. The ligand has been crystalized in the monoclinic system with a P21/c space group. The biological activities of metal complexes were evaluated using disc diffusion and broth dilution methods. In vitro antibacterial activities of the ligand and their metal complexes were examined against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Serratia marcescens) and compared to the standard drugs. It was found that metal complexes displayed much higher antibacterial activities and better inhibitory effects than that of the ligand and standard drugs. Among these complexes, the compound having Zn-metal showed greater antibacterial activity against all four tested bacteria and was more effective against Serratia marcescens with the zone inhibition diameter of 26 mm and MIC value of 31.25 µg/mL.

Highlights

  • In the past few decades, due to the changes in human habits and climate changes, bacterial infections have been a major cause of illness or death [1]

  • Antibiotics are essential to treat infections caused by bacteria

  • The structure of the parent ligand was investigated of 12 spectroscopy

Read more

Summary

Introduction

In the past few decades, due to the changes in human habits and climate changes, bacterial infections have been a major cause of illness or death [1]. Antibiotics are essential to treat infections caused by bacteria. Their overuse and misuse by humans have been linked to bacteria resistance, which is a severe public health problem [2]. To overcome this serious medical problem, the discovery of new types of antibiotics or the expansion of existing drugs is a very important and challenging issue [3]. In recent years, research has been focused on developing new drugs, which may act through structural changes, to solve the problem of bacterial drug resistant [4]. Linkage isomerism is of major interest in the field of inorganic chemistry can be used to develop new compounds with potential pharmaceutical applications in the field of biomedicine [5,6,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.