Abstract

An inorganic nanomaterials combination of Sm, Ag, and TiO2 was synthesized using supercritical fluid drying (SCFD) combined with sol-gel techniques. The structure, photocatalysis and bacteriostatic activity of the materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XRPS), photocatalytic performance, and antibacterial activity experiments. The XRD results showed that the average particle diameter of Sm/Ag/TiO2 was 14.62 nm and Ag and Sm ions were dispersed on the surface of TiO2 in a highly dispersed, amorphous form. The TEM image showed that the size of the particle was 12 nm using the scherer formula. The XPS result showed that the element Sm was doped and Ag was loaded inorganic nanomaterials successfully. Sm/Ag/TiO2 exhibited optimal photocatalytic properties at 600 °C, the photocatalytic optimal proportion of Sm/Ag/TiO2 was 2:2:100. When the molar ratio was 2:2:100, the bacteriostatic circle diameter was 16 mm for Staphylococcus aureus, the minimum bacteriostatic concentration was 200 μg/mL for white beads coccus, and the minimum bactericidal concentration was 2×104 μg/mL for white beads coccus. The SEM results showed that the antibacterial material attached to the candida albicans cell surface, cells appeared fold deformation. Therefore the inorganic nanomaterials Sm/Ag/TiO2 had high temperature resistance, good photocatalytic and antibacterial characteristics in visible light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.