Abstract

Magnetic Adsorption Separation (MAS) method is an ideal substitute for the environmental clean-up process. Magnetic material embedded with natural litter material is a facile route to achieve maximum adsorptive ability at a lower dosage, contact time and increased chance of metal-laden adsorbents’ recovery from aqueous matrices. In the present study, the synthesis of Fe3O4–TGT composite (TGT- C2) by the auto combustion method and its employment for Pb(II) removal from aqueous solutions is discussed. TGT- C2 is characterised using VSM (Vibrating Sample Magnetometer), SEM (Scanning Electron Microscope), Particle Size Analyzer, EDAX (Energy Dispersive X-ray Spectrometer) and FTIR (Fourier Transform Infra Red Spectrophotometer) techniques. TGT- C2 is found to be magnetic in nature and their saturation magnetization (Ms)/ Coercivity (Hc) values are calculated as 1.54 emu g-1/139.83 G, respectively, being less than bare Fe3O4. The synthesised nanocomposite registered a maximum of 98% sequestration of Pb(II) ions under the optimised conditions of 100 mg/L initial metal ion concentration, 10 min agitation time, 50 mg dosage and pH 5 environment. Isothermal verification, the kinetics of adsorption and successive desorption/ regeneration cycles were performed. The outcomes support the preparation of bio-nanocomposites from animal waste was successful in the efficient trapping of divalent metal ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call