Abstract

PurposeThe purpose of this study is to synthesise and characterise surface-capped molybdenum sulphide (SCMS) nanoparticles using the solvothermal method and to investigate their tribological behaviour towards friction improver and wear reduction for bio-based lubricant oil additives.Design/methodology/approachThe design of the experiment was to use freshly prepared molybdenum (II) acetate, thioacetamide, fatty acid and hexane as the solvent inside an autoclave vessel which is heated at high temperature and pressure. Various types of fatty acids were used as the capping agent, such as caproic, lauric, stearic and oleic acid. The SCMS nanoparticles formed were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and thermal gravimetric analysis. These nanoadditives were then blended into pentaerythrityl tetracaprylate/caprate ester at 0.05 Wt.% concentration. The formulated bio-based lubricant oil samples were tested for viscosity, viscosity index (VI) and density based on standard method ASTM D445 and ASTM D2270. A four-ball test was carried out for determination of coefficient of friction and wear scar diameter. The wear scar formed on the surface of the ball bearing was analysed using scanning electron microscopy.FindingsThe characterisation results showed that SCMS nanoparticles were successfully formed with amorphous ball-like structure, and the presence of the capping layer surrounding the nanoparticles was confirmed. Then, the formulated bio-based lubricant oil with addition of nanoadditives displays improved tribological properties in term of VI, antifriction and wear reduction.Originality/valueThis research provides a synthesis method of producing SCMS nanoparticles using the organomolybdenum complex as the chemical precursor through the solvothermal reaction approach. Besides that, it also gives an alternative antifriction and antiwear nanoadditive for formulation of the bio-based lubricant oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.