Abstract

Single phase (Sb1-xPbx)2(Mn1-ySby)O4 (0.0 ≤ x ≤ 0.608, 0.0 ≤ y ≤ 0.372) samples with the Sb2MnO4−type structure were prepared at 650 °C by solid-state reaction in evacuated sealed silica tubes. A replacement of Sb by Pb results in the oxidation of Sb3+ to Sb5+, which in turn replaces Mn2+ cations in octahedrally coordinated positions within the infinite rutile-type chains. The crystal structures of Pb0.44Sb1.64Mn0.92O4, Pb0.75Sb1.48Mn0.77O4, Pb1.07Sb1.26Mn0.67O4, and Pb1.186Sb1.175Mn0.639O4 were refined from X-ray powder diffraction data. Increasing the Pb content leads to a decrease of the a parameter from a = 8.719(2) Å to a = 8.6131(8) Å and to an increase of the c parameter from c = 5.999(2) Å to c = 6.2485(7) Å (for Sb2MnO4 and Pb1.216Sb1.155Mn0.628O4, respectively). This occurs due to increasing average cation size at the Pb/Sb position and decreasing cation size at the Mn/Sb position that leads to strong deformation of the (Mn/Sb)O6 octahedra. Starting from the Pb0.75Sb1.48Mn0.77O4 composition a modulated structure with q = γc* was observed by electron diffraction. Hig-resolution electron microscopy observations revealed that Mn and Sb ions order forming layers of octahedrally coordinated positions filled either by Mn2+ or by Sb5+ cations and alternating along the c axis. The dilution of the magnetic Mn2+ cations by nonmagnetic Sb5+ entities leads to a suppression of the antiferromagnetic intrachain interaction and disappearance of long-range magnetic order at high doping level. At T = 20 K the Axy spin component was found to be dominant in the AFM structure of the Pb0.44Sb1.64Mn0.92O4 sample by neutron diffraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.