Abstract

Serine/threonine protein kinases Aurora A, B, and C play essential roles in cell mitosis and cytokinesis, and a number of Aurora kinase inhibitors have been evaluated in the clinic. Herein we report the synthesis and their antiproliferation of 3,5-disubstituted-2-aminopyrazines as kinases inhibitors. Amongst, 4-((3-amino-6- (3,5-dimethylisoxazol-4-yl)pyrazin-2-yl)oxy)-N-(3-chlorophenyl) benzamide (12Aj) exhibited the strongest antiproliferative activities against U38, HeLa, HepG2 and LoVo cells with IC50 values were 11.5 ± 3.2, 1.34 ± 0.23, 7.30 ± 1.56 and 1.64 ± 0.48 μM, as well as inhibited Aurora A and B with the IC50 values were 90 and 152 nM, respectively. Molecular docking studies indicated that 12Aj appeared to form stable hydrogen bonds with either Aurora A or Aurora B. Furthermore, 12Aj arrested HeLa cell cycle in G2/M phase by regulating protein levels of cyclinB1 and cdc2. In addition, the bioinformatics prediction further revealed that 12Aj possessed good drug likeness using SwissADME. These results suggested that 12Aj was worthy of future development of potent anticancer agents as pan-Aurora kinases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call