Abstract
Three new NOS donor ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Ni(II) complexes prepared from the chloride salt and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Ni2(PAPS)(H2O)2](H2O)2, [Ni(H2PAPT)Cl2(H2O)](H2O)2 and [(Ni)2(HPABT)2Cl2(H2O)2], respectively. The IR spectra of complexes shows that H2PAPS behaves as a binegative pentadentate via both CO of hydrazide moiety in keto and enol form, enolized CO of cyanate moiety and the CN (azomethine) groups of enolization. H2PAPT behaves as neutral tridentate via both CO of hydrazide moiety and CN (azomethine) group due to SH formation and finally H2PABT behaves as mononegative tetradentate via CO and enolized CO of hydrazide moiety, CO of benzoyl moiety and CS groups. The experimental IR spectra of ligands are compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO (Highest Occupied Molecular Orbitals), LUMO (Lowest Unoccupied Molecular Orbital) and dipole moments have been calculated. The calculated HOMO–LUMO energy gap reveals that charge transfer occurs within the molecule. The theoretical values of binding energies indicate the higher stability of complexes than of ligands. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats–Redfern and Horowitz–Metzger methods. The antibacterial activities were also tested against B. Subtilis and E. coli bacteria. The free ligands showed a higher antibacterial effect than their Ni(II) complexes. The antitumor activities of the Ligands and their Ni(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells. All ligands were found to display cytotoxicity that are better than that of Fluorouracil (5-FU), while Ni(II) complexes show low activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.