Abstract

The present study describes the synthesis and characterization of a series of novel Schiff bases derived from 2,4-dihydroxybenzaldehyde. The biological activities of the newly synthesized compounds were examined by investigating their antioxidant, antibacterial, antifungal, enzyme inhibition and DNA interaction potential. The potential of these compounds as an antioxidant was determined by 2,2-diphenylpicrylhydrazyl radical scavenging method. The antibacterial and antifungal activities of these compounds were assayed by the disk diffusion method, while the enzyme inhibition studies were carried out against acetylcholinesterase and butyrylcholinesterase. The aforementioned studies revealed that the newly synthesized Schiff bases can be used as potential inhibitors for cholinesterase. In addition, the molecular docking studies also agreed well with the experimental results with better interaction patterns in the cases of acetylcholinesterase and butyrylcholinesterase. The DNA binding interactions in these synthesized compounds was studied by the UV–Vis absorption titration method and the results of calculated thermodynamic parameters such as binding constant (K) and free energy change (ΔG) were calculated accordingly. Most of these Schiff bases displayed relatively higher positive values for K and larger negative values for ΔG, indicating efficient binding of these Schiff bases with the DNA. During the course of this study, we also carried out the computational analysis for the determination of the mode of binding of these compounds with the DNA structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.