Abstract

CCR2 and CCR5 receptors play a key role in the development and progression of several inflammatory, cardiovascular and autoimmune diseases. Therefore, dual targeting of both receptors appeals as a promising strategy for the treatment of such complex, multifactorial disorders. Herein we report on the design, synthesis and biological evaluation of benzo[7]annulene- and [7]annulenothiophene-based selective and dual CCR2 and CCR5 receptor antagonists. Intermediates were designed in such a way that diversification could be introduced at the end of the synthesis. Starting from the lead compound TAK-779 (1), the quaternary ammonium moiety was exchanged by different non-charged moieties, the 4-methylphenyl moiety was extensively modified and the benzo[7]annulene core was replaced bioisosterically by the [7]annulenothiophene system. The naphthyl derivative 9h represents the most promising dual antagonist (Ki (CCR2) = 25 nM, IC50 (CCR5) = 17 nM), whereas the 6-isopropoxy-3-pyridyl and 4-methoxycarbonylphenyl derivatives 9k and 9r show more than 20-fold selectivity for the CCR2 (Ki = 19 nM) over the CCR5 receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.