Abstract

Highly ordered benzene-bridged periodic mesoporous organosilicas (PMOs) that were functionalized with exceptionally high loadings of carboxylic acid groups (COOH), up to 80 mol % based on silica, have been synthesized and their use as adsorbents for the adsorption of methylene blue (MB), a basic dye pollutant, and for the loading and release of doxorubicin (DOX), an anticancer drug, is demonstrated. These COOH-functionalized benzene-silicas were synthesized by the co-condensation of 1,4-bis(triethoxysilyl) benzene (BTEB) and carboxyethylsilanetriol sodium salt (CES), an organosilane that contained a carboxylic acid group, in the presence of non-ionic oligomeric surfactant Brij 76 in acidic medium. The materials thus obtained were characterized by a variety of techniques, including powder X-ray diffraction (XRD), nitrogen-adsorption/desorption isotherms, TEM, and (13)C and (29)Si solid-state NMR spectroscopy. Owing to the exceptionally high loadings of COOH groups, their high surface areas, and possible π-π-stacking interactions, these adsorbents have very high adsorption capacities and extremely rapid adsorption rates for MB removal and for the controlled loading/release of DOX, thus manifesting their great potential for environmental and biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.