Abstract

Gap junction membrane channels assemble as dodecameric complexes, in which a hexameric hemichannel (connexon) in one plasma membrane docks end to end with a connexon in the membrane of a closely apposed cell. Steps in the synthesis, assembly and turnover of gap junction channels appear to follow the general secretory pathway for membrane proteins. In addition to homo-oligomeric connexons, different connexin polypeptide subunits can also assemble as hetero-oligomers. The ability to form homotypic and heterotypic channels that consist of two identical or two different connexons, respectively, adds even greater versatility to the functional modulation of gap junction channels. Electron cryocrystallography of recombinant gap junction channels has recently provided direct evidence for α-helical folding of at least two of the transmembrane domains within each connexin subunit. The potential to correlate the structure and biochemistry of gap junction channels with recently identified human diseases involving connexin mutations makes this a particularly exciting area of research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call