Abstract

AbstractQuantum‐dot‐in‐perovskite solids (QDiP), wherein colloidal quantum dots (CQDs) are inside bulk hybrid halide perovskites, have emerged as a novel class of semiconductors with mixed dimensionalities. The interfacial quality achieved enables good charge transport from the perovskite matrix to the embedded dots and leads to photon interaction functionalities that go beyond those of the single‐phase constituents. In this review, recent advances in the synthesis and compositions of QDiP are showcased, the improved optoelectronic properties are discussed, and their applications are explored. The authors focus on how the combination of CQDs and halide perovskites enhances stability, charge transport, and carrier diffusion length. Progress in device operation (prominently, light‐emitting diodes and solar cells) is summarized, and a perspective on future opportunities for QDiPs is given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call