Abstract

A novel series of 1,5- and 1,8-disubstituted 10-benzylidene-10 H-anthracen-9-ones and 10-(2- oxo-2-phenylethylidene)-10 H-anthracen-9-ones was synthesized to assess the substituent effects on biological activity. The 3-hydroxy-2,4-dimethoxy-benzylidene analogue 16h displayed strong antiproliferative activity against several tumor cell lines, including multi-drug resistant phenotypes. Flow cytometric studies showed that KB/HeLa cells treated by elected compounds were arrested in the G2/M phases of the cell cycle. Among the compounds tested for inhibition of tubulin polymerization, 14 compounds proved to be exceptionally active with IC 50 values < 1 μM. In the 1,5-dichloro-derived series of benzylideneanthracenones, E/ Z isomers were separated and biological effects were monitored. We found that the olefinic geometry had no significant effect on biological activity. Furthermore, the E isomeric 1,5-dichloro-substituted phenacylidenes entirely proved to be more potent inhibitors of tubulin polymerization than the recently described 10-(2- oxo-2-phenylethylidene)-10 H-anthracen-9-ones. In conclusion, the present study improves understanding of the action of anthracenone-based tubulin polymerization inhibitors and contributes to the design of further potent anti-tubulin drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call