Abstract

Transition metal complex of Ni(II) with mefloquine hydrochloride (antimalaria drug) was synthesized using a template method. Chemical analysis including conductivity measurements and spectroscopic studies were used to propose the geometry and mode of binding of the ligand to metal ion. From analytical data, the stoichiometry of the complex has been found to be 1:1. Infrared spectral data also suggest that the ligand (mefloquine hydrochloride) behaves as a tridentate ligand with N:N:O donor sequence towards the metal ion. The complex generally showed octahedral coordinate geometry. Molar conductance of 10-2 mol dm-3 methanol solution of the complex indicated non-electrolytic nature of metal complex. It also revealed that the ligand anions were covalently bonded to the complex. In vivoevaluation of antimalarial studies of the metal complex shows greater activities when compared to the free ligand. Mefloquine and its metal complex increased significantly (p < 0.05) serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) and significantly reduced these enzymes in the liver and kidney when compared to the control. This revealed that both mefloquine and its metal complex might show toxicity particularly on the liver and kidney with the metal complex group being mild. Key words: Transition metal, antimicrobial, antimalarial drug, complexation, toxicological studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.