Abstract

BackgroundPlant fungi (e.g., Pellicularia sasakii, Gibberella zeae, Fusarium oxysporum, and Cytospora mandshurica and Phytophthora infestans) and bacteria (e.g., Ralstonia solanacearum) are extremely difficult to manage in agricultural production. The high incidence of plant mortality and the lack of effective control methods make P. sasakii and R. solanacearum two of the world’s most destructive plant pathogens. Pathogenic fungi and bacteria are responsible for billions of dollars in economic losses worldwide each year. Thus, we designed an active amide structure and synthesized a series of novel amide derivatives containing a triazole moiety to discover new bioactive molecules and pesticides that can act against fungi and bacteria.ResultsA series of amide derivatives containing a triazole moiety were synthesized. All the obtained compounds were characterized through proton and carbon nuclear magnetic resonance spectroscopy, infrared spectroscopy, and elemental analysis. Preliminary antifungal activity test showed that some of the synthesized compounds exhibited moderate antifungal activity against P. sasakii, G. azeae, F. oxysporum, C. mandshurica, and P. infestans at 50 mg/L. Compound 4u displayed more potent antifungal activity against P. sasakii and G. azeae than hymexazol. Preliminary antibacterial activity results showed that some of the synthesized compounds exhibited high anti-bacterial activity against R. solanacearum at 200 mg/L. Compounds 4m and 4q displayed high antibacterial activity against R. solanacearum, with 71% and 65% inhibitory rates, respectively.ConclusionsA series of novel amide derivatives containing 1,2,4-triazole moiety were synthesized through the reaction of intermediate 3 with different acyl chlorides and anhydrous potassium carbonates in anhydrous tetrahydrofuran at 50°C, using 2,4-dichloroacetophenoneas as a starting material. The title compounds exhibited high inhibitory effects against P. sasakii, R. solanacearum, and G. azeae.

Highlights

  • Plant fungi (e.g., Pellicularia sasakii, Gibberella zeae, Fusarium oxysporum, and Cytospora mandshurica and Phytophthora infestans) and bacteria (e.g., Ralstonia solanacearum) are extremely difficult to manage in agricultural production

  • Plant fungi (e.g., P. sasakii, G. azeae, F. oxysporum, C. mandshurica, and P. infestans) and bacteria (e.g., R. solanacearum) are extremely difficult to control in agricultural production

  • The results showed that most of the synthesized compounds exhibited antifungal activity against G. azeae, F. oxysporum, C. mandshurica, P. sasakii, and P. infestans at 50 mg/L and antibacterial activity against R. solanacearum at 200 mg/L

Read more

Summary

Results

A series of amide derivatives containing a triazole moiety were synthesized. All the obtained compounds were characterized through proton and carbon nuclear magnetic resonance spectroscopy, infrared spectroscopy, and elemental analysis. Preliminary antifungal activity test showed that some of the synthesized compounds exhibited moderate antifungal activity against P. sasakii, G. azeae, F. oxysporum, C. mandshurica, and P. infestans at 50 mg/L. Compound 4u displayed more potent antifungal activity against P. sasakii and G. azeae than hymexazol. Preliminary antibacterial activity results showed that some of the synthesized compounds exhibited high antibacterial activity against R. solanacearum at 200 mg/L. Compounds 4m and 4q displayed high antibacterial activity against R. solanacearum, with 71% and 65% inhibitory rates, respectively

Conclusions
Results and discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call