Abstract

In this study, the antifungal compound 3,5-Diamino-1,2,4-Triazolinium picrate (3,5-DTAZPA) crystals were fully grown and characterized using FT-Raman and FT-IR experiment techniques. Computational methods of 3,5-DTAZPA were performed up to B3LYP with a 6–311++G (d, p) basis set. The Optimized geometry and natural bond orbital (NBO) analysis were been carried out with the help of density functional theory (DFT). The vibrational assignments related to different modes of vibrations were built up by normal coordinate analysis (NCA). Frontier molecular orbital theory (HOMO-LUMO), molecular electrostatic potential (MEP) and Fukui functions were computed. reduced density gradient (RDG), the electron density’s topology and hydrogen bonds were analyzed. The Kirby–Bauer method was employed to assess 3,5-DTAZPA compound’s in vitro antifungal properties against fungal strains. The docking calculations were also carried out with the target protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call