Abstract

Twenty-two novel longifolene-derived diphenyl ether-carboxylic acid compounds 7a-7v were synthesized from renewable biomass resources longifolene, and their structures were confirmed by FT-IR, 1H NMR, 13C NMR, and HRMS. The preliminary evaluation of in vitro antifungal activity displayed that compound 7b presented inhibition rates of 85.9%, 82.7%, 82.7%, and 81.4% against Alternaria solani, Cercospora arachidicola, Rhizoctonia solani, and Physalospora piricola, respectively, and compound 7l possessed inhibition rates of 80.7%, 80.4%, and 80.3% against R. solani, C. arachidicola, P. piricola, respectively, exhibiting excellent and broad-spectrum antifungal activities. Besides, compounds 7f and 7a showed significant antifungal activities with inhibition rates of 81.2% and 80.7% against A.solani, respectively. Meanwhile, a reasonable and effective 3D-QSAR mode (r2 = 0.996, q2 = 0.572) has been established by the CoMFA method. Furthermore, the drug-loading complexes 7b/MgAl-LDH were prepared and characterized. Their pH-responsive controlled-release behavior was investigated as well. As a result, complex 7b/MgAl-LDH-2 exhibited excellent controlled-releasing performance in the water/ethanol (10:1, v:v) and under a pH of 5.7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call