Abstract

Currently, it has been common to see people being affected and dying from untreatable infections caused by multidrug-resistant (MDR) germs. To tackle this problem, developing new effective chemotropic agents is urgently needed. Hence, this project aims to design, synthesize, and evaluate their antibacterial and antioxidant activities of new series of [2,3′-biquinoline]-4-carboxylic acid and quinoline-3-carbaldehyde analogs. The molecular docking analysis of the compounds against E. coli DNA gyrase was computed to investigate the binding mode of the compounds within the active site of the enzyme. In this regard, a new series of [2,3′-biquinoline]-4-carboxylic acid and quinoline-3-carbaldehyde analogs were synthesized by utilization of Vilsmeier–Haack, Doebner, nucleophilic substitution, and hydrolysis reactions. The structures of the synthesized compounds were determined using UV-Vis, FT-IR, and NMR. The synthesized compounds were screened for their antibacterial activity against four bacterial strains using disc diffusion methods. The findings of the study revealed that seven of synthetic compounds possess good antibacterial activity compared to ciprofloxacin which was used as a positive control in the experiment. Among them, compounds 4, 9, and 10 displayed the highest mean inhibition zone of 13.7 ± 0.58, 16.0 ± 1.7, and 20.7 ± 1.5 mm, respectively, at 0.1 μg/μL. The radical scavenging property of these compounds was evaluated using DPPH radical assay where compounds 9 and 20 showed the strongest activity with IC50 values of 1.25 and 1.75 μg/mL, respectively. At the same concentration, the IC50 value of ascorbic acid was 4.5 μg/mL. The synthesized compounds were also assessed for their in silico molecular docking analysis. Compounds 4 (−6.9 kcal/mol), 9 (−6.9 kcal/mol), and 10 (−7.9 kcal/mol) showed the maximum binding affinity close to ciprofloxacin (−7.2 kcal/mol) used as a positive control. Thus, compounds 4, 9, and 10 showed the best antibacterial activities in both in vitro and molecular docking analyses among the synthetic compounds. The results of in silico molecular docking evaluation of the synthetic compounds against E. coli DNA gyrase B were in good agreement with the in vitro antibacterial analysis. Therefore, the antibacterial activity displayed by these compounds is encouraging for further investigation to improve the activities of [2,3′-biquinoline]-4-carboxylic acid by incorporating various bioisosteric groups in either of the quinoline rings.

Highlights

  • It has been common to see people being affected and dying from untreatable infections caused by multidrug-resistant (MDR) germs

  • A new series of [2,3′-biquinoline]-4-carboxylic acid and quinoline-3-carbaldehyde analogs were synthesized by utilization of Vilsmeier–Haack, Doebner, nucleophilic substitution, and hydrolysis reactions. e structures of the synthesized compounds were determined using UV-Vis, FT-IR, and NMR. e synthesized compounds were screened for their antibacterial activity against four bacterial strains using disc diffusion methods. e findings of the study revealed that seven of synthetic compounds possess good antibacterial activity compared to ciprofloxacin which was used as a positive control in the experiment

  • Compounds 4 (−6.9 kcal/mol), 9 (−6.9 kcal/mol), and 10 (−7.9 kcal/mol) showed the maximum binding affinity close to ciprofloxacin (−7.2 kcal/mol) used as a positive control. us, compounds 4, 9, and 10 showed the best antibacterial activities in both in vitro and molecular docking analyses among the synthetic compounds. e results of in silico molecular docking evaluation of the synthetic compounds against E. coli DNA gyrase B were in good agreement with the in vitro antibacterial analysis. erefore, the antibacterial activity displayed by these compounds is encouraging for further investigation to improve the activities of [2,3′biquinoline]-4-carboxylic acid by incorporating various bioisosteric groups in either of the quinoline rings

Read more

Summary

Introduction

It has been common to see people being affected and dying from untreatable infections caused by multidrug-resistant (MDR) germs To tackle this problem, developing new effective chemotropic agents is urgently needed. This project aims to design, synthesize, and evaluate their antibacterial and antioxidant activities of new series of [2,3′-biquinoline]-4-carboxylic acid and quinoline-3-carbaldehyde analogs. E molecular docking analysis of the compounds against E. coli DNA gyrase was computed to investigate the binding mode of the compounds within the active site of the enzyme In this regard, a new series of [2,3′-biquinoline]-4-carboxylic acid and quinoline-3-carbaldehyde analogs were synthesized by utilization of Vilsmeier–Haack, Doebner, nucleophilic substitution, and hydrolysis reactions. Many synthetic methods have been developed for the preparation of quinolines, and improvements in the synthesis methodology are still an active research issue [23]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call