Abstract

In the search of new antiplasmodial agents, a multitargeted approach was used in the synthesis of triazolopyrimidine- and 4-aminoquinolines-based hybrids. In vitro antiplasmodial evaluation on chloroquine-sensitive (3D7) and -resistant (W2) P. falciparum strains identified triazolopyrimidine-4-aminoquinoline hybrids to be the most potent in the series, outperforming bis-triazolopyrimidines. The active compounds were subjected to mechanistic studies with the plausible and expected targets including heme, PfCRT, and PfDHODH, that eventually validated the biological data. The active compound surpassed the antimalarial drug CQ by inhibiting the parasite's cellular process (hemozoin formation) and parasitic enzymes (PfCRT and PfDHODH), as confirmed by UV-vis and molecular modeling studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.