Abstract

In this work, copper (Cu) matrix composite reinforced with titanium carbide (TiC) was fabricated by powder metallurgy (PM) method with the varying TiC content from 0% to 12% by weight in the step of 4%. The required weight percentage of powders was milled in an indigenously developed ball milling setup. Green compacts were made using a computer-controlled hydraulic press (400 kN) and sintered in a muffle furnace at a temperature of 950°C. Scanning electron microscope (SEM) was used to analyze the distribution of TiC particles in Cu matrix in as-sintered conditions. X-ray diffraction (XRD) analysis resulted in the existence of respective phases in the produced composites. The structural characteristics such as stress, strain, dislocation density, and grain size of the milled composites were evaluated. Cold upsetting was conducted for the sintered composites at room temperature to evaluate the axial (σz), hoop (σө), hydrostatic (σm), and effective (σeff) true stresses. These stresses were analyzed against true axial strain (εz). Results showed that the increase in the inclusion of weight percentage of TiC into the Cu matrix increases density, hardness, (σz), (σө), (σm), (σeff), and stress ratio parameters such as (σz/σeff), (σθ/σeff), (σm/σeff), and (σz/σθ) of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.