Abstract

ZnO/HfO2:Eu nanocables were prepared by radio frequency sputtering with electrospun ZnO nanofibers as cores. The well-crystallized ZnO/HfO2:Eu nanocables showed a uniform intact core–shell structure, which consisted of a hexagonal ZnO core and a monoclinic HfO2 shell. The photoluminescence properties of the samples were characterized. A white-light band emission consisted of blue, green, and red emissions was observed in the nanocables. The blue and green emissions can be attributed to the zinc vacancy and oxygen vacancy defects in ZnO/HfO2:Eu nanocables, and the yellow–red emissions are derived from the inner 4f-shell transitions of corresponding Eu3+ ions in HfO2:Eu shells. Enhanced white-light emission was observed in the nanocables. The enhancement of the emission is ascribed to the structural changes after coaxial synthesis.

Highlights

  • Transition metal oxide HfO2 activated by RE ions has recently attracted great attention for the luminescent applications, due to its rather large band gap of 5.8 eV, high refractive index, good transparency in visible spectralMany methods have already been demonstrated for generating 1D nanocables [14,15,16,17]

  • We report an approach to efficiently fabricate zinc oxide (ZnO)/HfO2:Eu nanocables by sputtering Eu-doped HfO2 shells onto electrospun ZnO nanofiber cores

  • It can be seen that the emission bands of the ZnO/HfO2:Eu nanocables consist of that of ZnO nanofibers and HfO2:Eu nanotubes, and white-light emission is observed from the nanocables

Read more

Summary

Introduction

Transition metal oxide HfO2 activated by RE ions has recently attracted great attention for the luminescent applications, due to its rather large band gap of 5.8 eV, high refractive index, good transparency in visible spectralMany methods have already been demonstrated for generating 1D nanocables [14,15,16,17]. Abstract ZnO/HfO2:Eu nanocables were prepared by radio frequency sputtering with electrospun ZnO nanofibers as cores. The well-crystallized ZnO/HfO2:Eu nanocables showed a uniform intact core–shell structure, which consisted of a hexagonal ZnO core and a monoclinic HfO2 shell. A white-light band emission consisted of blue, green, and red emissions was observed in the nanocables.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.