Abstract

Utilizing experimental and computational vibrational circular dichroism (VCD) spectroscopy, we explored the conformational preferences of a series of chiral C3 -symmetric octaazacryptands with tris(2-aminoethyl)-amine head groups derived from valine. While the spectra of the smallest azacryptand with p-phenyl linkers and its elongated derivative with p-biphenyls linker were found to match well with the computed spectra, the computed conformational preferences of the m-biphenyl-based azacryptand did not seem to reflect the conformations dominating in chloroform solution. A detailed analysis revealed that structural changes resulting in a collapsed cage structure gave a notably better match with the experiment. It could subsequently be concluded from the VCD analysis, that the octaazacryptands prefer a collapsed structure, which is not predicted by density functional theory (DFT) calculations as the global minimum structures. These findings are expected to have consequences also for future studies on inclusion complexes of such azacryptands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call