Abstract

The burning of fossil fuels produces carbon dioxide emissions, increased levels of which cause serious environmental problems. Therefore, the design and use of new materials as media for capturing carbon dioxide and other gases, such as hydrogen and methane, has attracted significant research attention. In this work, three metal complexes containing a fusidate moiety were synthesized and tested as storage media for gases. By reacting sodium fusidate and metal chlorides in boiling ethanol, the corresponding metal complexes were obtained with 69–76% yields. The fusidate moiety acts as a bidentate ligand with variable geometry (distortion octahedral, square planner, or tetrahedral) depending on the metal (manganese, copper, or zinc, respectively) it is associated with. The elemental composition of the metal complexes was confirmed via energy dispersive X-ray spectroscopy and their surface morphology was inspected via field emission scanning electron microscopy. The Brunauer-Emmett-Teller surface area of the metal complexes varied from 31.2 to 46.9 m2/g, with pore volume and diameters of 0.035–0.049 cm3/g and 3.02–3.18 nm, respectively. The gas uptake at 323 K for carbon dioxide, hydrogen, and methane depended on the metal, gas, surface pore volume, and pore diameter. Reasonable carbon dioxide uptake (6.3–7.2wt%) was achieved with fusidate metal complexes at high temperature and pressure, whereas hydrogen and methane slowly permeated throughout the complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.