Abstract
Yttrium hydroxyl carbonate (Y(OH)CO3) precursors were synthesized by the homogeneous co-precipitation method in the presence of polyacrylic acid (PAAc). Resultant precursor particle size is about 15–20 nm with narrow size distribution whereas the particle size is smaller than those acquired by the conventional homogeneous precipitation method. Effective decrease of Y(OH)CO3 particle size was found to be higher for the presence of weak polyanionic ionomer such as PAAc than the presence of strong polyanionic ionomer such as sodium polystyrene sulfonate (PSS). It was observed that the morphology and size of the precursors are almost unchanged after the calcination process. Er3+ doped Y2O3 nanoparticles were synthesized by PAAc assisted homogeneous co-precipitation method showed bright green (550 nm) and red (660 nm) upconversion (UC) as well as near-infrared (NIR) fluorescence (1550 nm) under 980-nm excitation. UC and NIR fluorescence bioimaging and in-vitro cytotoxicity assay of Er3+ doped Y2O3 nanoparticles were successfully attempted with commercially available macrophages and B-cell hybridomas. Cellular uptake of nanoparticles is evidenced from bright field, UC and NIR fluorescence images of macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Crystal Growth and Characterization of Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.