Abstract
The synthesis and the thermotropic liquid crystalline properties of calamitic mesogens (p-terphenyl derivatives, a biphenyl and a p-quintaphenyl derivative) with a laterally attached hydrophilic group (1,2-diol groups, primary and secondary amides, polyether chains, crown ether units, carbohydrate units, a hydrazide, a quaternary ammonium salt, a carboxylic acid and a sodium carboxylate) are reported. The compounds were investigated by means of polarizing microscopy and calorimetry. The influence of the type of the polar group, of the length of the rigid core and the position of the connection of the hydrophilic group with the rod-like rigid core have been investigated. Many of these amphiphilic molecules can form monolayer S A phases. If a sufficient amount of hydrogen bonding is available their mesophase stability can be higher than that of related compounds with other lateral substituents. Rectangular columnar mesophases can be found for compounds with rather large and flexible polar lateral substituents (polyether chains) fixed to the center of the rigid terphenyl unit. These columnar phases should represent ribbon phases resulting from the collapse of the smectic layers (modulated smectic phases). The proposed model is also related to that suggested for supermolecular structures of triblock copolymers. Thus, these molecules can be regarded as low molecular weight block compounds consisting of three different and incompatible molecular parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.