Abstract

In this work, results on the thermoluminescence dosimetry properties of beta particle irradiated ZnO obtained by thermal annealing of chemically synthesized ZnS are reported. ZnS powder was sintered at 950 °C during 24 h in air, in order to obtain pellet-shaped ZnO samples. The thermoluminiescence (TL) intensity of ZnO previously exposed to beta radiation increased as the dose increased in the 0.025-6.4 kGy interval studied. Characteristic glow curves exhibited two emission maxima at ~ 94 and ~ 341 °C. The dosimetric peak located at ~ 341 °C shifted towards lower temperatures as the dose increased, which indicates that second-order kinetic processes are involved in the thermoluminiescence emission. The dose response of ZnO showed a linear behaviour in the 0.025 Gy-0.8 kGy dose interval, which makes this material suitable and promising for medical, industrial and also space dosimetry applications. The thermoluminescence total signal faded down 48 % 6 h after irradiation and showed an asymptotic behaviour for longer times, due mainly to the ~ 341 °C stable and dosimetric glow peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.