Abstract

Abstract Powder samples of SrAl 2 O 4 (Eu) were synthesized by the combustion method using urea as a fuel. The combustion products were calcined at 700 °C for 1 h. X-ray diffraction (XRD) patterns of the prepared sample exhibit sharp diffraction peaks and absence of any amorphous phase. The average crystalline size was found to be ~33.04 nm, calculated by using Debye Scherer's formula. The scanning electron microscope (SEM) images reveal that the crystallites have no uniform shape and the presence of several micro- and nano-particles within the grain. This may be due to the non-uniform distribution of temperature and mass flow in the combustion flame which results in the non-uniform shape of crystallites. The thermogravimetric analysis (TGA) indicates that the prepared sample is thermally stable up to 900 °C. Thermoluminescence (TL) behavior of prepared samples was studied after irradiation with Co-60gamma rays, 6 mega voltage (MV) and 16 MV photon beams at various doses. Glow curve of the prepared SrAl 2 O 4 (Eu:1%) sample was similar in shape irrespective of incident energy and radiation type. The dominant peak in each glow curve appeared around at 312 °C. No shifts in peak positions have been observed. All the glow curves of sample doped with Eu(3%) have relatively higher intensity as compared to the sample doped with Eu(1%). Energy dependence has been observed in the present phosphor. This could be because of increase in the probability of Compton's interaction at this energy range due to transmission of primary as well as scattered radiation and decrease in mass attenuation coefficient with the increase in energy. The trapping parameters namely activation energy ( E ), order of kinetics ( b ) and frequency factor ( s ) have been determined using the glow curve shape (Chen's) method. These phosphors could be utilized for display applications, dating, temperature sensor, low as well as high energy radiation detection and dosimetry especially where tissue equivalency is not much desirable like gamma irradiator, environmental and retrospective dose assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call