Abstract
We synthesized a polyhydroxyamide (PHA) copolymer via low-temperature solution polymerization of 3,3'-dihydroxybenzidine with terephthaloyl chloride (80.0 mol%) and isophthaloyl chloride (20.0 mol%) in N,Ndimethylacetamide with the aid of LiCl. We prepared the PHA copolymer derivatives containing the fluorine-based substituents and investigated their solubility, cyclization behavior, and thermal properties using a differential scanning calorimeter (DSC), a thermogravimetric analyzer (TGA), and the simultaneous thermogravimetric analyzer coupled with a mass spectrometer (STA-MS). The chemical structures of the PHA copolymer and its derivatives, as well as the polybenzoxazoles (PBOs) obtained through thermal cyclization of the copolymer and derivatives, were determined by a fourier transform infrared (FT-IR) spectroscopic analysis. The PHA copolymer could be dissolved in organic solvents only with the aid of LiCl, while its derivatives were readily soluble in DMAc and NMP without LiCl at room temperature. The DSC and TGA results demonstrated that the PHA copolymer derivatives could be converted to PBOs at a lower temperature than the PHA copolymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.